On two general nonlocal problems of an arbitrary (fractional) orders differential equations

Abd El-Salam Sh. A. ${ }^{(1)}$ and Gaafar F. M. ${ }^{(2)}$
${ }^{(1)}$ shrnahmed@yahoo.com
Faculty of Science, Damanhour University, Damanhour, Egypt
${ }^{(2)}$ fatmagaafar2@yahoo.com
Faculty of Science, Damanhour University, Damanhour, Egypt

Abstract

In this paper, we prove some local and global existence theorems for a fractional orders differential equations with nonlocal conditions, also the uniqueness of the solution will be studied.

Key words: Fractional calculus; fractional order differential equations with nonlocal conditions.

1 Introduction

In this work, we consider an arbitrary (fractional) orders differential equation of the form:

$$
\begin{equation*}
\frac{d u}{d t}=f\left(t, D^{\alpha} u(t)\right), \quad \alpha \in(0,1) \tag{1}
\end{equation*}
$$

with the nonlocal conditions

$$
\begin{equation*}
\left.I^{\alpha} u(t)\right|_{t=\eta}=\left.I^{\alpha} u(t)\right|_{t=1}, \quad \eta \in(0,1) \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.t^{1-\alpha} u(t)\right|_{t=\eta}=\left.t^{1-\alpha} u(t)\right|_{t=1}, \quad \eta \in(0,1) \tag{3}
\end{equation*}
$$

The nonlocal problems have been intensively studied by many authors, for instance in [4], the authors proved the existence of L_{1}-solution of the nonlocal boundary value problem

$$
\left\{\begin{array}{c}
D^{\beta} u(t)+f(t, u(\phi(t)))=0, \beta \in(1,2), t \in(0,1) \\
\left.I^{\gamma} u(t)\right|_{t=0}=0, \gamma \in(0,1], \alpha u(\eta)=u(1), 0<\eta<1,0<\alpha \eta^{\beta-1}<1 .
\end{array}\right.
$$

where the function f satisfies Caratheodory conditions and the growth condition.
And, in [3], the authors proved by using the Banach contraction fixed point theorem, the existence of a unique solution of the fractional-order differential equation:

$$
{ }_{C} D^{\alpha} x(t)=c(t) f(x(t))+b(t)
$$

with the nonlocal condition:

$$
x(0)+\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)=x_{0},
$$

where $x_{0} \in \Re$ and $0<t_{1}<t_{2}<\cdots<t_{m}<1$, and $a_{k} \neq 0$ for all $k=1,2, \cdots, m$. (Where ${ }_{C} D^{\alpha}$ is the Caputo derivative).

2 Preliminaries

Define $L_{1}(I)$ as the class of Lebesgue integrable functions on the interval $I=[a, b]$, where $0 \leq a<b<\infty$ and let $\Gamma($. $)$ be the gamma function. Let $C(U, X)$ be The set of all compact operators from the subspace $U \subset X$ into the Banach space X and let $B_{r}=\left\{u \in L_{1}(I):\|u\|<r, r>0\right\}$.

Definition 1.1 The fractional integral of the function $f(.) \in L_{1}(I)$ of order $\beta \in R^{+}$is defined by (see [5] - [8])

$$
I_{a}^{\beta} f(t)=\int_{a}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) d s
$$

Definition 1.2 The Riemann-Liouville fractional-order derivative of $f(t)$ of order $\alpha \in(0,1)$ is defined as (see [5] - [8])

$$
D_{a}^{\alpha} f(t)=\frac{d}{d t} I_{a}^{1-\alpha} f(t), \quad t \in[a, b] .
$$

In this paper, we prove the existence of L_{1}-solutions for problems (1) - (2) and (1) - (3).Also, we will study the uniqueness of the solution.

Now, let us state the theorems which will be needed in the sequel.

Theorem 2.1 (Rothe Fixed Point Theorem) [1]

Let U be an open and bounded subset of a Banach space E, let $T \in C(\bar{U}, E)$. Then T has a fixed point if the following condition holds

$$
T(\partial U) \subseteq \bar{U}
$$

Theorem 2.2 (Nonlinear alternative of Laray-Schauder type) [1]

Let U be an open subset of a convex set D in a Banach space E. Assume $0 \in U$ and $T \in C(\bar{U}, E)$. Then either
(A1) T has a fixed point in \bar{U}, or
(A2) there exists $\gamma \in(0,1)$ and $x \in \partial U$ such that $x=\gamma T x$.

Theorem 2.3 (Kolmogorov compactness criterion) [2]

Let $\Omega \subseteq L^{p}(0,1), 1 \leq p<\infty$. If
(i) Ω is bounded in $L^{p}(0,1)$ and
(ii) $x_{h} \rightarrow x$ as $h \rightarrow 0$ uniformly with respect to $x \in \Omega$, then Ω is relatively compact in $L^{p}(0,1)$, where

$$
x_{h}(t)=\frac{1}{h} \int_{t}^{t+h} x(s) d s
$$

3 Main results

Firstly, we will prove the equivalence of equation (1) with the corresponding Volterra integral equation:

$$
\begin{equation*}
y(t)=\frac{u_{0} t^{-\alpha}}{\Gamma(1-\alpha)}+\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f(s, y(s)) d s, \quad t \in(0,1) \tag{4}
\end{equation*}
$$

Indeed: integrate both sides of (1), we get

$$
\begin{equation*}
u(t)-u_{0}=I f\left(t, D^{\alpha} u(t)\right) \tag{5}
\end{equation*}
$$

Now, operating by $I^{1-\alpha}$ on both sides of (5), then

$$
\begin{equation*}
I^{1-\alpha} u(t)-I^{1-\alpha} u_{0}=I^{2-\alpha} f\left(t, D^{\alpha} u(t)\right) \tag{6}
\end{equation*}
$$

Differentiating both sides we get

$$
D^{\alpha} u(t)-\frac{u_{0} t^{-\alpha}}{\Gamma(1-\alpha)}=I^{1-\alpha} f\left(t, D^{\alpha} u(t)\right)
$$

Take $y(t)=D^{\alpha} u(t)$, we get (4)
Conversely, operate by I^{α} on both sides of (6), and differentiate twice we obtain (1).

Now define the operator T as

$$
T y(t)=\frac{u_{0} t^{-\alpha}}{\Gamma(1-\alpha)}+\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f(s, y(s)) d s, \quad t \in(0,1)
$$

To solve equation (4), we must prove that the operator T has a fixed point.
Consider the following assumptions:
(a) $f:(0,1) \times R \rightarrow R$ be a function with the following properties:
(i) for each $t \in(0,1), f(t,$.$) is continuous,$
(ii) for each $y \in R, f(., y)$ is measurable,
(iii) there exist two real functions $t \rightarrow a(t), t \rightarrow b(t)$ such that

$$
|f(t, y)| \leq a(t)+b(t)|y|, \text { for each } t \in(0,1), y \in R
$$

where $a(.) \in L_{1}(0,1)$ and $b($.$) is measurable and bounded.$
Now, for the local existence of the solutions we have the following theorem:

Theorem 3.1

If assumptions (i) - (iii) are satisfied, such that

$$
\begin{equation*}
\frac{\sup |b(t)|}{\Gamma(2-\alpha)}<1 \tag{7}
\end{equation*}
$$

then the fractional order integral equation (4) has a solution $y \in B_{r}$, where

$$
r \leq \frac{\frac{u_{0}}{\Gamma(2-\alpha)}+\frac{1}{\Gamma(2-\alpha)}\|a\|}{1-\frac{\sup (b(t) \|}{\Gamma(2-\alpha)}} .
$$

Proof. Let u be an arbitrary element in B_{r}. Then from the assumptions (i) - (iii), we have

$$
\begin{aligned}
\|T y\| & =\int_{0}^{1}|T y(t)| d t \\
& \leq \int_{0}^{1}\left|\frac{u_{0}}{\Gamma(1-\alpha)} t^{-\alpha}\right| d t+\int_{0}^{1}\left|\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f(s, y(s)) d s\right| d t \\
& \leq\left(\frac{u_{0} t^{1-\alpha}}{\Gamma(2-\alpha)}\right)_{0}^{1}+\int_{0}^{1} \int_{s}^{1} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} d t|f(s, y(s))| d s \\
& \leq \frac{u_{0}}{\Gamma(2-\alpha)}+\left.\int_{0}^{1} \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)}\right|_{s} ^{1}(|a(s)|+|b(s)||y(s)|) d s \\
& \leq \frac{u_{0}}{\Gamma(2-\alpha)}+\int_{0}^{1} \frac{(1-s)^{1-\alpha}}{\Gamma(2-\alpha)}(|a(s)|+|b(s)||y(s)|) d s \\
& \leq \frac{u_{0}}{\Gamma(2-\alpha)}+\frac{1}{\Gamma(2-\alpha)} \int_{0}^{1}(|a(s)|+|b(s)||y(s)|) d s \\
& \leq \frac{u_{0}}{\Gamma(2-\alpha)}+\frac{1}{\Gamma(2-\alpha)}\|a\|+\frac{1}{\Gamma(2-\alpha)} \sup |b(t)|\|y\| .
\end{aligned}
$$

therefore the operator T maps L_{1} into itself. Now, let $y \in \partial B_{r}$, that is, $\|y\|=r$, then the last inequality implies

$$
\|T y\| \leq \frac{u_{0}}{\Gamma(2-\alpha)}+\frac{1}{\Gamma(2-\alpha)}\|a\|+\frac{1}{\Gamma(2-\alpha)} \sup |b(t)| r .
$$

Then $T\left(\partial B_{r}\right) \subset \bar{B}_{r}\left(\right.$ closure of $\left.B_{r}\right)$ if

$$
\|T y\| \leq \frac{u_{0}}{\Gamma(2-\alpha)}+\frac{1}{\Gamma(2-\alpha)}\|a\|+\frac{1}{\Gamma(2-\alpha)} \sup |b(t)| r \leq r
$$

which implies that

$$
\frac{u_{0}}{\Gamma(2-\alpha)}+\frac{1}{\Gamma(2-\alpha)}\|a\|+\frac{1}{\Gamma(2-\alpha)} \sup |b(t)| r \leq r
$$

Therefore

$$
r \leq \frac{\frac{u_{0}}{\Gamma(2-\alpha)}+\frac{1}{\Gamma(2-\alpha)}\|a\|}{1-\frac{\sup |b(t)|}{\Gamma(2-\alpha)}}
$$

From inequality (7) we deduce that $r>0$. Also, since

$$
\begin{aligned}
\|f\| & =\int_{0}^{1}|f(s, y(s))| d s \\
& \leq \int_{0}^{1}(|a(s)|+|b(s)||y(s)|) d s \\
& \leq\|a\|+\sup |b(t)|\|y\| .
\end{aligned}
$$

Then f in $L_{1}(0,1)$.
Further, from (assumption (i)) f is continuous in y and since I^{α} maps $L_{1}(0,1)$ continuously into itself, then $I^{\alpha} f(t, y(t))$ is continuous in y. Since y is an arbitrary element in B_{r}, then T maps B_{r} into $L_{1}(0,1)$ continuously.
Now, we will show that T is compact, by using Theorem 2.3. So, let Ω be a bounded subset of B_{r}. Then $T(\Omega)$ is bounded in $L_{1}(0,1)$, i.e. condition (i) of Theorem 2.3 is satisfied. It remains to show that $(T y)_{h} \rightarrow T y$ in $L_{1}(0,1)$ when $h \rightarrow 0$, uniformly.

$$
\begin{aligned}
\left\|(T y)_{h}-T y\right\| & =\int_{0}^{1}\left|(T y)_{h}(t)-(T y)(t)\right| d t \\
& =\int_{0}^{1}\left|\frac{1}{h} \int_{t}^{t+h}(T y)(s) d s-(T y)(t)\right| d t \\
& \leq \int_{0}^{1}\left(\frac{1}{h} \int_{t}^{t+h}|(T y)(s)-(T y)(t)| d s\right) d t \\
& \leq \int_{0}^{1} \frac{1}{h} \int_{t}^{t+h}\left|\frac{u_{0}}{\Gamma(1-\alpha)} s^{-\alpha}-\frac{u_{0}}{\Gamma(1-\alpha)} t^{-\alpha}\right| d s d t \\
& +\int_{0}^{1} \frac{1}{h} \int_{t}^{t+h}\left|I^{1-\alpha} f(s, y(s))-I^{1-\alpha} f(t, y(t))\right| d s d t
\end{aligned}
$$

Since $f \in L_{1}(0,1)$, then $I^{1-\alpha} f(.) \in L_{1}(0,1)$. Moreover, since $t^{-\alpha} \in L_{1}(0,1)$. Then, we have (see [9])

$$
\frac{1}{h} \int_{t}^{t+h}\left|\frac{u_{0}}{\Gamma(1-\alpha)} s^{-\alpha}-\frac{u_{0}}{\Gamma(1-\alpha)} t^{-\alpha}\right| d s \rightarrow 0
$$

and

$$
\frac{1}{h} \int_{t}^{t+h}\left|I^{1-\alpha} f(s, y(s))-I^{1-\alpha} f(t, y(t))\right| d s \rightarrow 0
$$

for a.e. $t \in(0,1)$. Therefore, by Theorem 2.3 , we have that $T(\Omega)$ is relatively compact, that is, T is a compact operator.
Therefore, Theorem 2.1 with $U=B_{r}$ and $E=L_{1}(0,1)$ implies that T has a fixed point. This completes the proof.

Now, for the existence of global solution, we will prove he following theorem :

Theorem 3.2

Let the conditions (i) - (iii) be satisfied in addition to the following condition:
(b) Assume that every solution $y(.) \in L_{1}(0,1)$ to the equation

$$
y(t)=\gamma\left(\frac{u_{o}}{\Gamma(1-\alpha)} t^{-\alpha}+\int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} f(s, y(s)) d s\right) \text { a.e. on }(0,1), 0<\alpha<1
$$

satisfies $\|y\| \neq r(r$ is arbitrary but fixed $)$.
Then the fractional order integral equation (4) has at least one solution $y \in L_{1}(0,1)$.
Proof. Let y be an arbitrary element in the open set $B_{r}=\{y:\|y\|<r, r>0\}$. Then from the assumptions (i) - (iii), we have

$$
\|T y\| \leq \frac{u_{0}}{\Gamma(2-\alpha)}+\frac{1}{\Gamma(2-\alpha)}\|a\|+\frac{1}{\Gamma(2-\alpha)} \sup |b(t)|\|y\|
$$

The above inequality means that the operator T maps B_{r} into L_{1}. Moreover, we have

$$
\|f\| \leq\|a\|+\sup |b(t)|\|y\|
$$

This estimation shows that f in $L_{1}(0,1)$.
Then from Theorem 3.1 we get that T maps B_{r} into $L_{1}(0,1)$ continuously, and the operator T is compact.
Set $U=B_{r}$ and $D=E=L_{1}(0,1)$, then from assumption (b), we find that condition $A 2$ of Theorem 2.2 does not hold. Therefore, Theorem 2.2 implies that T has a fixed point. This completes the proof.

4 Uniqueness of the solution

Theorem 4.1

If the function $f:(0,1) \times R \rightarrow R$ satisfy assumption $(i i)$ of Theorem 3.1 and satisfy the following assumption

$$
\begin{equation*}
|f(t, y)-f(t, z)| \leq L|y-z| \tag{8}
\end{equation*}
$$

then the fractional order integral equation (4) has a unique solution.
Proof. From assumption (8), we get

$$
|f(t, y)-f(t, 0)| \leq L|y|
$$

but since

$$
|f(t, y)|-|f(t, 0)| \leq|f(t, y)-f(t, 0)| \leq L|y|
$$

therefore

$$
|f(t, y)| \leq|f(t, 0)|+L|y|
$$

i.e. assumptions (i) and ($i i i$) of theorem 3.1 are satisfied.

Now, let $y_{1}(t)$ and $y_{2}(t)$ be any two solutions of equation (4), then

$$
\left|y_{2}(t)-y_{1}(t)\right| \leq L \int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)}\left|y_{2}(s)-y_{1}(s)\right| d s
$$

Therefore

$$
\begin{aligned}
\int_{0}^{1}\left|y_{2}(t)-y_{1}(t)\right| d t & \leq L \int_{0}^{1} \int_{0}^{t} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)}\left|y_{2}(s)-y_{1}(s)\right| d s d t \\
\left\|y_{2}-y_{1}\right\| & \leq L \int_{0}^{1} \int_{s}^{1} \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)} d t\left|y_{2}(s)-y_{1}(s)\right| d s \\
& \leq \frac{L}{\Gamma(2-\alpha)}\left\|y_{2}-y_{1}\right\|
\end{aligned}
$$

which implies that

$$
y_{1}(t)=y_{2}(t)
$$

Now for the existence and uniqueness of the solution of problems (1) - (2) and (1) - (3), we have the following two theorems:

Theorem 4.2

If the assumptions of theorem 4.1 are satisfied, then problem (1)-(2) has a unique solution. Proof. Since

$$
u(t)=u_{0}+I f(t, y(t)) \quad \text { from }(5)
$$

then from conditions (2), we get

$$
\begin{aligned}
u_{0}\left(\eta^{\alpha}-1\right) & =\int_{0}^{1}(1-s)^{\alpha} f(s, y(s)) d s-\int_{0}^{\eta}(\eta-s)^{\alpha} f(s, y(s)) d s \\
u_{0} & =\int_{0}^{1} G(\eta, s) f(s, y(s)) d s
\end{aligned}
$$

where

$$
G(\eta, s)=\left\{\begin{array}{cl}
\frac{[(1-s)]^{\alpha}-(\eta-s)^{\alpha}}{\eta^{\alpha}-1} & 0 \leq s \leq \eta \leq 1 \\
\frac{(1-s)]^{\alpha}}{\eta^{\alpha}-1} & 0 \leq \eta \leq s \leq 1
\end{array}\right.
$$

Therefore,

$$
u(t)=\int_{0}^{1} G(\eta, s) f(s, y(s)) d s+I f(t, y(t))
$$

which completes the proof.

Theorem 4.3

If the assumptions of theorem 4.1 are satisfied, then problem (1) - (3) has a solution.
Proof. Since

$$
u(t)=u_{0}+I f(t, y(t)) \quad \text { from }(5)
$$

then from conditions (3), we get

$$
\begin{aligned}
u_{0}\left(\eta^{1-\alpha}-1\right) & =\int_{0}^{1} f(s, y(s)) d s-\int_{0}^{\eta} \eta^{1-\alpha} f(s, y(s)) d s \\
u_{0} & =\int_{0}^{1} G(\eta, s) f(s, y(s)) d s
\end{aligned}
$$

where

$$
G(\eta, s)=\left\{\begin{array}{cl}
-1 & 0 \leq s \leq \eta \leq 1 \\
\frac{1}{\eta^{1-\alpha}-1} & 0 \leq \eta \leq s \leq 1
\end{array}\right.
$$

Therefore,

$$
u(t)=\int_{0}^{1} G(\eta, s) f(s, y(s)) d s+I f(t, y(t))
$$

which completes the proof.

References

[1] Deimling, K. Nonlinear Functional Analysis, Springer-Verlag (1985).
[2] Dugundji, J. Granas, A. Fixed Point theory, Monografie Mathematyczne, PWN, Warsaw (1982).
[3] El-Sayed, A. M. A. and Abd El-Salam, Sh. A. On the stability of a fractional-order differential equation with nonlocal initial condition, EJQTDE, 29 (2008) 1-8.
[4] El-Sayed, A. M. A. and Abd El-Salam, Sh. A. Nonlocal boundary value problem of a fractional-order functional diffrential equation, Inter. J. of Non. Sci. (2009).
[5] Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York (1993).
[6] Podlubny, I. and EL-Sayed, A. M. A. On two definitions of fractional calculus, Preprint UEF 03-96 (ISBN 80-7099-252-2), Slovak Academy of Science-Institute of Experimental phys. (1996).
[7] Podlubny, I. Fractional Differential Equations, Acad. press, San Diego-New YorkLondon (1999).
[8] Samko, S., Kilbas, A. and Marichev, O. L. Fractional Integrals and Derivatives, Gordon and Breach Science Publisher, (1993).
[9] Swartz, C. Measure, Integration and Function spaces, World Scientific, Singapore (1994).

