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Abstract

In this paper, we prove some local and global existence theorems for a fractional
orders differential equations with nonlocal conditions, also the uniqueness of the solution
will be studied.
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1 Introduction

In this work, we consider an arbitrary (fractional) orders differential equation of the form:

du

dt
= f(t,Dα u(t)), α ∈ (0, 1) (1)

with the nonlocal conditions

Iαu(t)|t = η = Iα u(t)|t = 1, η ∈ (0, 1) (2)

or
t1 − αu(t)|t = η = t1 − α u(t)|t = 1, η ∈ (0, 1) (3)

The nonlocal problems have been intensively studied by many authors, for instance in [4],
the authors proved the existence of L1-solution of the nonlocal boundary value problem

Dβ u(t) + f(t, u(ϕ(t))) = 0, β ∈ (1, 2), t ∈ (0, 1),

Iγ u(t)|t=0 = 0, γ ∈ (0, 1], α u(η) = u(1), 0 < η < 1, 0 < α ηβ−1 < 1.

where the function f satisfies Caratheodory conditions and the growth condition.
And, in [3], the authors proved by using the Banach contraction fixed point theorem, the
existence of a unique solution of the fractional-order differential equation:

CD
α x(t) = c(t) f(x(t)) + b(t),
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with the nonlocal condition:

x(0) +
m∑
k=1

ak x(tk) = x0,

where x0 ∈ ℜ and 0 < t1 < t2 < · · · < tm < 1, and ak ̸= 0 for all k = 1, 2, · · · ,m.
(Where CD

α is the Caputo derivative).

2 Preliminaries

Define L1(I) as the class of Lebesgue integrable functions on the interval I = [a, b],
where 0 ≤ a < b < ∞ and let Γ(.) be the gamma function. Let C(U,X) be The set
of all compact operators from the subspace U ⊂ X into the Banach space X and let
Br = {u ∈ L1(I) : ||u|| < r, r > 0} .

Definition 1.1 The fractional integral of the function f(.) ∈ L1(I) of order β ∈ R+ is
defined by (see [5] - [8])

Iβa f(t) =

∫ t

a

(t − s)β − 1

Γ(β)
f(s) ds.

Definition 1.2 The Riemann-Liouville fractional-order derivative of f(t) of order α ∈ (0, 1)
is defined as (see [5] - [8])

Dα
a f(t) =

d

dt
I1 − α
a f(t), t ∈ [a, b].

In this paper, we prove the existence of L1-solutions for problems (1) - (2) and (1) - (3).Also,
we will study the uniqueness of the solution.

Now, let us state the theorems which will be needed in the sequel.

Theorem 2.1 (Rothe Fixed Point Theorem) [1]

Let U be an open and bounded subset of a Banach space E, let T ∈ C(Ū , E). Then T has
a fixed point if the following condition holds

T (∂U) ⊆ Ū .

Theorem 2.2 (Nonlinear alternative of Laray-Schauder type) [1]

Let U be an open subset of a convex set D in a Banach space E. Assume 0 ∈ U and
T ∈ C(Ū , E). Then either

(A1) T has a fixed point in Ū , or

(A2) there exists γ ∈ (0, 1) and x ∈ ∂U such that x = γ Tx.
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Theorem 2.3 (Kolmogorov compactness criterion) [2]

Let Ω ⊆ Lp (0, 1), 1 ≤ p < ∞. If

(i) Ω is bounded in Lp (0, 1) and

(ii) xh → x as h → 0 uniformly with respect to x ∈ Ω, then Ω is relatively compact
in Lp (0, 1), where

xh(t) =
1

h

∫ t+h

t
x(s) ds.

3 Main results

Firstly, we will prove the equivalence of equation (1) with the corresponding Volterra inte-
gral equation:

y(t) =
u0 t− α

Γ(1 − α)
+

∫ t

0

(t − s)− α

Γ(1 − α)
f(s, y(s)) ds, t ∈ (0, 1). (4)

Indeed: integrate both sides of (1), we get

u(t) − u0 = I f(t, Dα u(t)), (5)

Now, operating by I1−α on both sides of (5), then

I1−αu(t) − I1−α u0 = I2−α f(t, Dα u(t)). (6)

Differentiating both sides we get

Dα u(t) − u0 t− α

Γ(1 − α)
= I1−α f(t, Dα u(t)).

Take y(t) = Dα u(t), we get (4)
Conversely, operate by Iα on both sides of (6), and differentiate twice we obtain (1).

Now define the operator T as

Ty(t) =
u0 t− α

Γ(1 − α)
+

∫ t

0

(t − s)− α

Γ(1 − α)
f(s, y(s)) ds, t ∈ (0, 1).

To solve equation (4), we must prove that the operator T has a fixed point.

Consider the following assumptions:

(a) f : (0, 1)×R → R be a function with the following properties:

(i) for each t ∈ (0, 1), f(t, .) is continuous,

(ii) for each y ∈ R, f(., y) is measurable,
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(iii) there exist two real functions t → a(t), t → b(t) such that

| f(t, y) | ≤ a(t) + b(t) | y |, for each t ∈ (0, 1), y ∈ R,

where a(.) ∈ L1(0, 1) and b(.) is measurable and bounded.

Now, for the local existence of the solutions we have the following theorem:

Theorem 3.1

If assumptions (i) - (iii) are satisfied, such that

sup | b(t) |
Γ(2 − α)

< 1, (7)

then the fractional order integral equation (4) has a solution y ∈ Br, where

r ≤
u0

Γ(2 − α) + 1
Γ(2 − α) || a ||

1 − sup | b(t) |
Γ(2 − α)

.

Proof. Let u be an arbitrary element in Br. Then from the assumptions (i) - (iii), we have

||Ty|| =

∫ 1

0
| Ty(t) | dt

≤
∫ 1

0
| u0
Γ(1 − α)

t− α | dt +

∫ 1

0
|
∫ t

0

(t − s)− α

Γ(1 − α)
f(s, y(s)) ds | dt

≤
(

u0 t1 − α

Γ(2 − α)

)1

0

+

∫ 1

0

∫ 1

s

(t − s)− α

Γ(1 − α)
dt | f(s, y(s)) | ds

≤ u0
Γ(2 − α)

+

∫ 1

0

(t − s)1 − α

Γ(2 − α)
|1s ( | a(s) | + | b(s) | | y(s) | ) ds

≤ u0
Γ(2 − α)

+

∫ 1

0

(1 − s)1 − α

Γ(2 − α)
( | a(s) | + | b(s) | | y(s) | ) ds

≤ u0
Γ(2 − α)

+
1

Γ(2 − α)

∫ 1

0
( | a(s) | + | b(s) | | y(s) | ) ds

≤ u0
Γ(2 − α)

+
1

Γ(2 − α)
|| a || +

1

Γ(2 − α)
sup | b(t) | || y ||.

therefore the operator T maps L1 into itself. Now, let y ∈ ∂Br, that is, ||y|| = r, then the
last inequality implies

||Ty|| ≤ u0
Γ(2 − α)

+
1

Γ(2 − α)
|| a || +

1

Γ(2 − α)
sup | b(t) | r.

Then T (∂Br) ⊂ B̄r (closure of Br) if

||Ty|| ≤ u0
Γ(2 − α)

+
1

Γ(2 − α)
|| a || +

1

Γ(2 − α)
sup | b(t) | r ≤ r,
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which implies that

u0
Γ(2 − α)

+
1

Γ(2 − α)
|| a || +

1

Γ(2 − α)
sup | b(t) | r ≤ r.

Therefore

r ≤
u0

Γ(2 − α) + 1
Γ(2 − α) || a ||

1 − sup | b(t) |
Γ(2 − α)

.

From inequality (7) we deduce that r > 0. Also, since

||f || =

∫ 1

0
| f(s, y(s)) | ds

≤
∫ 1

0
( | a(s) | + | b(s) | | y(s) | ) ds

≤ ||a|| + sup | b(t) | ||y||.

Then f in L1(0, 1).
Further, from (assumption (i)) f is continuous in y and since Iα maps L1(0, 1) continuously
into itself, then Iαf(t, y(t)) is continuous in y. Since y is an arbitrary element in Br,then
T maps Br into L1(0, 1) continuously.
Now, we will show that T is compact, by using Theorem 2.3. So, let Ω be a bounded subset
of Br. Then T (Ω) is bounded in L1(0, 1), i.e. condition (i) of Theorem 2.3 is satisfied. It
remains to show that (Ty)h → Ty in L1(0, 1) when h → 0, uniformly.

||(Ty)h − Ty|| =

∫ 1

0
| (Ty)h(t) − (Ty)(t) | dt

=

∫ 1

0
| 1

h

∫ t+h

t
(Ty)(s) ds − (Ty)(t) | dt

≤
∫ 1

0

(
1

h

∫ t+h

t
| (Ty)(s) − (Ty)(t) | ds

)
dt

≤
∫ 1

0

1

h

∫ t+h

t
| u0
Γ(1 − α)

s− α − u0
Γ(1 − α)

t− α | ds dt

+

∫ 1

0

1

h

∫ t+h

t
| I1 − α f(s, y(s)) − I1 − α f(t, y(t)) | ds dt.

Since f ∈ L1(0, 1), then I1 − αf(.) ∈ L1(0, 1). Moreover, since t− α ∈ L1(0, 1). Then, we
have (see [9])

1

h

∫ t+h

t
| u0
Γ(1 − α)

s− α − u0
Γ(1 − α)

t− α | ds → 0

and
1

h

∫ t+h

t
| I1 − α f(s, y(s)) − I1 − α f(t, y(t)) | ds → 0
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for a.e. t ∈ (0, 1). Therefore, by Theorem 2.3, we have that T (Ω) is relatively compact,
that is, T is a compact operator.
Therefore, Theorem 2.1 with U = Br and E = L1(0, 1) implies that T has a fixed point.
This completes the proof.

Now, for the existence of global solution, we will prove he following theorem :

Theorem 3.2

Let the conditions (i) - (iii) be satisfied in addition to the following condition:

(b) Assume that every solution y(.) ∈ L1(0, 1) to the equation

y(t) = γ

(
uo

Γ(1 − α)
t− α +

∫ t

0

(t− s)− α

Γ(1 − α)
f(s, y(s)) ds

)
a.e. on (0, 1), 0 < α < 1

satisfies ||y|| ≠ r (r is arbitrary but fixed).

Then the fractional order integral equation (4) has at least one solution y ∈ L1(0, 1).
Proof. Let y be an arbitrary element in the open set Br = {y : ||y|| < r, r > 0}. Then
from the assumptions (i) - (iii), we have

||Ty|| ≤ u0
Γ(2 − α)

+
1

Γ(2 − α)
|| a || +

1

Γ(2 − α)
sup | b(t) | || y ||.

The above inequality means that the operator T maps Br into L1. Moreover, we have

||f || ≤ ||a|| + sup | b(t) | ||y||.

This estimation shows that f in L1(0, 1).
Then from Theorem 3.1 we get that T maps Br into L1(0, 1) continuously, and the operator
T is compact.
Set U = Br and D = E = L1(0, 1), then from assumption (b), we find that condition A2 of
Theorem 2.2 does not hold. Therefore, Theorem 2.2 implies that T has a fixed point. This
completes the proof.

4 Uniqueness of the solution

Theorem 4.1

If the function f : (0, 1) × R → R satisfy assumption (ii) of Theorem 3.1 and satisfy the
following assumption

| f(t, y) − f(t, z) | ≤ L | y − z |, (8)

then the fractional order integral equation (4) has a unique solution.
Proof. From assumption (8), we get

| f(t, y) − f(t, 0) | ≤ L | y |,
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but since
| f(t, y) | − | f(t, 0) | ≤ | f(t, y) − f(t, 0) | ≤ L | y |,

therefore
| f(t, y) | ≤ | f(t, 0) | + L | y |,

i.e. assumptions (i) and (iii) of theorem 3.1 are satisfied.
Now, let y1(t) and y2(t) be any two solutions of equation (4), then

| y2(t) − y1(t) | ≤ L

∫ t

0

(t − s)− α

Γ(1 − α)
| y2(s)− y1(s) | ds.

Therefore∫ 1

0
| y2(t) − y1(t) | dt ≤ L

∫ 1

0

∫ t

0

(t − s)− α

Γ(1 − α)
|y2(s)− y1(s)| ds dt,

|| y2 − y1 || ≤ L

∫ 1

0

∫ 1

s

(t − s)− α

Γ(1 − α)
dt |y2(s)− y1(s)| ds

≤ L

Γ(2 − α)
|| y2 − y1 ||.

which implies that
y1(t) = y2(t).

Now for the existence and uniqueness of the solution of problems (1) - (2) and (1) - (3), we
have the following two theorems:

Theorem 4.2

If the assumptions of theorem 4.1 are satisfied, then problem (1) - (2) has a unique solution.
Proof. Since

u(t) = u0 + I f(t, y(t)) from (5),

then from conditions (2), we get

u0 (ηα − 1) =

∫ 1

0
(1 − s)α f(s, y(s)) ds −

∫ η

0
(η − s)α f(s, y(s)) ds,

u0 =

∫ 1

0
G(η, s) f(s, y(s)) ds,

where

G(η, s) =


[(1−s)]α−(η−s)α

ηα − 1 0 ≤ s ≤ η ≤ 1,

(1−s)]α

ηα − 1 0 ≤ η ≤ s ≤ 1.

Therefore,

u(t) =

∫ 1

0
G(η, s) f(s, y(s)) ds + I f(t, y(t)),

which completes the proof.
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Theorem 4.3

If the assumptions of theorem 4.1 are satisfied, then problem (1) - (3) has a solution.
Proof. Since

u(t) = u0 + I f(t, y(t)) from (5),

then from conditions (3), we get

u0 (η1 − α − 1) =

∫ 1

0
f(s, y(s)) ds −

∫ η

0
η1 − α f(s, y(s)) ds,

u0 =

∫ 1

0
G(η, s) f(s, y(s)) ds,

where

G(η, s) =


−1 0 ≤ s ≤ η ≤ 1,

1
η1 − α − 1

0 ≤ η ≤ s ≤ 1.

Therefore,

u(t) =

∫ 1

0
G(η, s) f(s, y(s)) ds + I f(t, y(t)),

which completes the proof.
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